

PAST PROVING GROUND EFFORTS AND GOES-R PROXY PRODUCTS

How did readiness levels of GOES-R proxies from 2012-2016 prepare the AWT and AWC for GOES-16 in 2017?

From research to operations...

...in the Aviation Weather Testbed

Readiness levels

1. Basic Research 2. Applied Research 3. Proof of concept for product 4. Successful evaluation of product – intermediate stage 5. Successful evaluation of product – final stage 6. Demonstration of product in a test environment 7. Demonstration of product in an operational environment 8. Finalized system show to operated as expected; training and documentation given

9. System deployed and used routinely

FOG AND LOW STRATUS FOR C&V VERIFICATION

DEN FOG (Nice save by GOES-R) Most guidance showing this as a CIG event. Darker "red" matched well with LOW VIS upstream, so briefed as a FG event with ~3 hours lead time.

Dissipation well forecast ~15Z

Fog and Low Stratus for C&V

Case courtesy of Michael Eckert, AWC NAM

- Provides probabilities of IFR/LIFR conditions. Is currently used by the NAMs at the Command Center for terminal ceiling forecasts
- Can be used to estimated onset and dissipation of fog/low ceilings over terminals
- Morning TAFS had VFR forecast
- NAM coordinated with WFO LOT
 - GOES-R prob IFR moving to ORD, TAF had clear
- TAF AMD issued

 REAL ZAU coordinated AMD to the FAA
- ORD and the airlines were able to prepare for IFR

 i.e. extra fuel for holding
 - oa More spacing between aircraft
- ~60 Flights between 10Z-12Z diversion cost ~\$100,000/flight...

"No diversions" so savings = ~\$600,000 in extra fuel

June 18th, 2013 - Fog and Low Stratus over ORD

15Z METAR KDEN 221453Z 06004KT 3SM OVC008 12/11 A3007 RMK AO2 SFC VIS 9

NWS/NCEP/AWC/NAM

Fog and Low Stratus

3. Proof of concept for product

SATELLITE-DERIVED CEILING HEIGHTS

Satellite-derived ceiling heights potential uses:

- Situational awareness in the generation of C&V grids in the Digital Aviation Services effort (TAF issuance, etc.)
- Quick glance at current conditions
- Shows promise in single layer cloud environments but shows struggle with multi-layers

Continuo SCC CAMPENDA SALA CAM

Cloud Base Height and Cloud Cover Layers

AWT Winter Experiment 2016 - Satellite Proving

0

4. Successful evaluation of product – intermediate stage

Himawari Gravity Waves: Imagery from 20170302 at 1800 UTC and Reports from 20170302 at 1810 UTC

1-h EDR: 4-No Turbulence +Light Turbulence +Moderate Turbulence +Severe Turbulence +Sev

Turbulence

7. Demonstration of product in an operational environment

Icing

- · The Flight Icing Threat provides a probability and intensity of icing
- · Can be used to aid in icing AIRMETs and provide additional icing observations
- · Has also been explored for icing forecast verification

May 6th, 2016

- Severe icing reported in the
 North Slope over Deadhorse, AK
- Alaska Aviation Weather Unit forecasters used the icing guidance to identify where icing conditions occurred
- Multiple severe and moderate to severe icing reports where issued in and around the airport
- Provided good guidance in an area that rarely has observations of any kind

Icing

GOES-R PROXIES AND GOES-16 BETA

How did we use the GOES-R proxy readiness levels to identify products for the 2017 beta/provisional GOES-16 evaluations at the AWT?

ABI Baseline Products

Aerosol Detection (Including Smoke and Dust)

Aerosol Optical Depth (AOD)

Clear Sky Masks

Cloud and Moisture Imagery

Cloud Optical Depth

Cloud Particle Size Distribution

Cloud Top Height

Cloud Top Phase

Cloud Top Pressure

Cloud Top Temperature

Derived Motion Winds

Derived Stability Indices

Downward Shortwave Radiation: Surface

Fire/Hot Spot Characterization

Fog/Low Stratus

Geostationary Lightning Detection

Hurricane Intensity Estimation

Land Surface Temperature (Skin)

Legacy Vertical Moisture Profile

Legacy Vertical Temperature Profile

Radiances

Rainfall Rate/QPE

Reflected Shortwave Radiation: TOA

Sea Surface Temperature (Skin)

Snow Cover

Total Precipitable Water

Volcanic Ash: Detection and Height

- Top choices for 2017 demonstration based on readiness levels reached by proxy GOES-13/15 products at the AWT in previous years
- Secondary choices for 2017 based on similarity to top choices as well as new products that apply directly to known aviation hazards and forecasting
- Tertiary choices for 2017 products that may be useful for aviation operations if further explored or used in various models/tools for a specific aviation hazard

GOES-16 baseline products identified for 2017 beta/provisional testing

Primary focus

ABI Future Capability Products

Absorbed Shortwave Radiation (Surface)

Aerosol Particle Size

Aircraft Flight Icing Threat

Cloud Ice Water Path

Cloud Heights/Layers

Cloud Liquid Water

Cloud Type

Convective Initiation

Currents

Currents: Offshore

Downward Longwave Radiation (Surface)

Enhanced "V"/Overshooting Top

Flood/Standing Water

Ice Cover

Ozone Total

Probability of Rainfall

Rainfall Total

Sea and Lake Ice: Age

Sea and Lake Ice: Concentration

Sea and Lake Ice: Motion

Snow Depth (Plains)

 ${\rm SO}_2$ Detection

Surface Albedo

Surface Emissivity

Tropopause Folding Turbulence Prediction

Upward Longwave Radiation (Surface)

Upward Longwave Radiation (TOA)

Vegetation Fraction: Green

Vegetation Index

Visibility

- Top potentials for 2017 demonstration

 based on readiness levels reached
 by proxy GOES-13/15 products at the

 AWT in previous years
- Secondary potentials based on similarity to top choices as well as new products that apply directly to known aviation hazards and forecasting
- Tertiary potentials products that may be useful for aviation operations if further explored or used in various models/tools for a specific aviation hazard

GOES-16 future capabilities products identified for continued testing

Secondary focus only

GOES-16 evaluations IDSS at SFO

AWC/NAM - Michael Eckert

- 1600Z Patch of Stratus formed over SFO & SMB necessitating a Ground Delay Program 1700z-1959z
- 2. 1700Z GOES-16 loop shows edges starting to erode
- 3. 1715Z GOES-W loop shows edges starting to erode
- 1719Z NAM Coordinates with CWSU ZOA & ATCSCC Specialists that Stratus is clearing rapidly
- 5. 1730Z GOES-16 loops shows stratus almost clear
- 6. 1747Z CWSU ZOA reports Pilots are getting Visuals into SFO
- 7. 1756Z ATCSCC cancels GDP

GOES-16 evaluations IDSS at SFO

Original GDP impacted 48 flights @ 38 min average delay per flight 48 x 38 = 1824 minutes of delay x \$81.00/min cost = ~\$150,000.00 (Total Delay Costs)

GOES-16 Estimated Savings:

32 flights freed up

 $32 \times 38 = 1216 \text{ min of delay recovered } \times 81.00/\text{min} =$

~\$100,000.00 (Costs recovered)

GOES-W Estimated Savings:

16 flights freed up

 $16 \times 38 = 608 \text{ min of delay recovered } \times \$81.00/\text{min} =$

~\$50,000.00 (Costs recovered)

Estimated cost savings related to GOES-16 = ~\$50,000

minus

Main Takeaway

GOES-16... 5 min updates & higher resolution -vs- GOES-W... 15 min updates & lower resolution provided AWC/NAM with earlier & higher confidence that clearing would hold.

Imparting this information to the FAA resulted in the earlier Ground Delay Program cancellation.

GOES-16 evaluations

Turbulence

GOES-16 water vapor channels and turbulence identification at AWC

- Resolution improvement → 2km on G15 to 1km on G16; brings out turbulence features not otherwise visible
- *Three WV bands* \rightarrow The addition of the low and upper-level water vapor bands provides turbulence in more layers of the atmosphere. Is the turbulence layer deep? Narrow? How does the extent differ vertically over a distance?
- February 22nd, 2017 932 and 1412 UTC (above) → GOES-16 captured wave features and associated widespread turbulence over the Central U.S. that were not readily apparent in GOES-15

GOES-16 evaluations Dust in SW U.S.

GOES-16 Dust RGB Imagery for blowing dust SIGMET consideration

- Spectral Resolution →
 GOES-16 has additional
 bands needed to identify
 and highlight dust, bands
 not available with the
 legacy GOES satellite
 series
- Spatial Resolution → 2km resolution along with the RGB capability highlighted dust not visible in generic visible imagery channels
- Temporal Resolution → 5minute imagery revealed a rapidly expanding dust plume in southern NM

Future concepts

- GLM lightning and the FAA N-90
 evaluation → can GLM lightning
 benefit traffic flow management
 and convective IDSS?
- Cloud/vis properties in the Digital Aviation Services effort → can various cloud properties and imagery improve the initialization of ceiling forecast?
- Other

 dust, smoke, volcanic ash detection; water vapor imagery and turbulence; cloud properties and icng

THANKS!

Questions?